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ABSTRACT

The problem of predicting polymorphism in atomic and molecular crystals con-

stitutes a significant challenge both experimentally and theoretically. From the

theoretical viewpoint, polymorphism prediction falls into the general class of

problems characterized by an underlying rough energy landscape, and conse-

quently, free energy based enhanced sampling approaches can be brought to

bear on the problem. In this paper, we build on a scheme previously intro-

duced by two of the authors in which the lengths and angles of the supercell are

targeted for enhanced sampling via temperature accelerated adiabatic free en-

ergy dynamics [T. Q. Yu and M. E. Tuckerman Phys. Rev. Lett. 107, 015701

(2011)]. Here, that framework is expanded to include general order parameters

that distinguish different crystalline arrangements as target collective variables

for enhanced sampling. The resulting free energy surface, being of quite high

dimension, is nontrivial to reconstruct, and we discuss one particular strategy

for performing the free energy analysis. The method is applied to the study

of polymorphism in xenon crystals at high pressure and temperature using the

Steinhardt order parameters without and with the supercell included in the set

of collective variables. The expected fcc and bcc structures are obtained, and

when the supercell parameters are included as collective variables, we also find

several new structures, including fcc states with hcp stacking faults. We also

apply the new method to the solid-liquid phase transition in copper at 1300

K using the same Steinhardt order parameters. Our method is able to melt

and refreeze the system repeatedly, and the free energy profile can be obtained

with high efficiency.
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I. INTRODUCTION

In the study of crystals, polymorphism refers to the ability of certain compounds to form

multiple stable structures, a phenomenon that has significant ramifications for pharmaceu-

ticals, high-energy materials, and organic electronics1. Experimental determination of all of

the relevant crystal structures of a particular compound under a given set of conditions is

both lengthy and costly. Therefore, computational approaches for a priori polymorphism

prediction, if sufficiently accurate and efficient, can potentially play an important role in the

understanding and designing crystals in these and other fields.

Considerable effort has been invested over several decades in the prediction of crystal

structures, and numerous theoretical methods have been developed2. Despite notable suc-

cesses in the computational prediction of crystal polymorphs3–5, such predictions are far from

routine, and the problem remains an important outstanding challenge. The most common

approach starts with candidate structures obtained by packing the molecules according the

symmetry operations of the most common space groups, performing a local optimization,

and then evaluating the associated lattice energy. Although this approach produces many

candidate structures, it may produce false positives or miss solid forms that are not perfect

crystals, including mixed structures and stable defects6, and it is not likely to identify struc-

tures that crystallize into rare space groups7. Moreover, this approach relies on a harmonic

approximation to the calculation of lattice phonon frequencies of the candidate structures in

order to determine thermodynamic properties such as the free energy. While the harmonic

approximation is often sufficient for low-temperature crystals governed by strong intermolec-

ular interactions, when systems are dominated by weak interactions, as is the case in many

organic molecular crystals, anharmonic effects become important, and alternate approaches

are needed. Obtaining fully anharmonic thermal contributions requires a methodology

based directly on free energy generation. This category of techniques, however, entails the

considerable challenge of sampling a complex and rough energy landscape in order to ob-

tain the relative populations of the different polymorphs. Because of this, polymorphism

prediction has been compared to the conformational exploration of proteins8. Although the

two challenges are very different, they share important features, and consequently, some

of the methods developed for biophysical structure prediction can be adapted for crystal
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polymorphism exploration8–12.

Following this idea, we recently introduced a new free energy approach for the discov-

ery and thermodynamic ranking of polymorphs of atomic and molecular crystals6,13. The

technique is derived from the recognition that temperature can be employed to acceler-

ate barrier crossing, an approach that has been shared by a variety of schemes including

simulated annealing14, simulated tempering15,16, parallel tempering17,18, and temperature

accelerated dynamics19. In our algorithm, we identify a set of collective variables (CVs)

capable of distinguishing different states and subject them to a high-temperature heat bath.

At the same time, these variables are also assigned high masses in order to effect an adia-

batic decoupling of these variables from the remaining degrees of freedom. This approach is

termed adiabatic free energy dynamics (AFED)20,21. In the limit of perfect adiabatic decou-

pling, it can be proved that the CVs move on the correct potential of mean force surface,

which is equivalent to the free energy surface20. The approach of Refs. [6,13], which we call

Crystal-AFED, is an adaptation of the AFED scheme to the isothermal-isobaric ensemble,

in which the cell lengths and angles, or equivalently, the elements of the full cell matrix, are

employed as the target CVs. Using these CVs, the polymorphs of crystalline benzene were

studied6, and it was found that 500 ps of simulation time were sufficient to identify all of

the stable polymorphs at 2 GPa and 100 K, and after just 5 ns, the free energy differences

were sufficiently converged to resolve a controversy concerning the structure of the benzene

II polymorph. This study also highlighted the importance of entropic contributions in the

stabilization of the benzene II structure obtained.

Targeting the cell matrix alone for enhanced sampling in the discovery of crystal poly-

morphs is useful when different polymorphs are characterized by very different unit cell

shapes, so that the lengths and angles of the cell are able to distinguish different structures.

In some cases, however, these parameters alone are insufficient to induce transitions be-

tween different solid forms, for example, when collective flipping of molecules is required to

effect such a transition. In addition, predicting crystal formation from amorphous or glassy

states generally cannot be easily accomplished using just the cell matrix. In these exam-

ples, transitions between polymorphs and crystallization from disorderd states are better

described with the aid of structural order parameters. We will refer to these as “inter-
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nal order parameters” in order to distinguish them from the cell matrix. The well known

Steinhardt order parameters22 constitute one such example. Recently, novel approaches to

the generation of general order parameters for molecular crystals have been introduced23,24.

Despite these intriguing advances, the problem of developing such general order parameters

remains a significant challenge. Structural order parameters are often used in the study

of phase transitions, nucleation, liquid crystals, and various other applications. Therefore,

targeting molecular order parameters in combination with the cell matrix could potentially

constitute a powerful approach to the discovery of crystal polymorphs based on enhanced

sampling and free energy surface generation. However, because general order parameters

are complicated functions of the primitive Cartesian coordinates of the atoms in a system,

they cannot be easily treated within the AFED scheme, which requires that the CVs be

explicit coordinates in the system or that they be made explicit via a transformation to a

set of generalized coordinates that contains the CVs as a subset of the larger coordinate

set. It was shown25,26, however, that this problem could be circumvented by introducing

an extended phase-space approach, in which the CVs of interest are harmonically bound to

the coordinates in the extended space. These extended coordinates are then subject to a

high temperature and are adiabatically decoupled from the remainder of the system. The

approach is termed temperature-accelerated molecular dynamics (TAMD)25 or driven adia-

batic free energy dynamics (d-AFED)26. Recently, a Monte Carlo version of this approach

was also introduced27, which fits the general framework of heterogeneous multiscale meth-

ods28,29. In the limit of perfect adiabatic decoupling and infinitely stiff harmonic coupling,

TAMD/d-AFED can be proved to generate the correct free energy surface as a function of

the CVs25,26,30.

In this paper, we further develop our previous temperature-accelerated sampling approach

for the discovery of crystal polymorphs to include internal order parameters as additional

CVs via the TAMD/d-AFED framework. We apply the approach to the case of solid xenon

at high pressure. Under the conditions chosen, we find that hitherto unexpected polymorphs

and fcc structures with hcp stacking faults are obtained. As a second example, we study

the liquid-solid phase transition of copper, which illustrates that our new approach can also

be effective in studying transitions between ordered and amorphous states.
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II. METHODOLOGY

A. Equations of motion

Consider a system containing N atoms with positions r1, ..., rN interacting via a potential

U(r1, ..., rN) ≡ U(r) in a supercell described by three vectors a, b, and c such that the volume

V of the cell is V = a · (b× c). These three vectors are collected in the columns of a matrix

h according to

h =











ax bx cx

ay by cy

az bz cz











, (1)

which is referred to as the cell matrix; its determinant gives the cell volume: V = det(h).

Suppose we are interested in the free energy surface as a function of n ≪ 3N collective

variables (CVs) q1(r), ...., qn(r). Under isothermal-isobaric conditions with external pressure

P , the relevant free energy is the Gibbs free energy G(s1, ..., sn), which is obtained from the

marginal probability distribution for the CVs q1(r), ..., qn(r) to have corresponding values

s1, ..., sn. This free energy is, therefore, given by

G(s1, ..., sn) = −
1

β
ln

[

1

∆

∫

dh
e−βPdet(h)

[det(h)]2

×

∫

D(h)

dr1 · · · drN e−βU(r)

n
∏

α=1

δ (qα(r)− sα)

]

(2)

where D(h) is the spatial domain defined by the cell matrix, β = 1/kBT , ∆ = ∆(N,P, T ) is

the isothermal-isobaric partition function. The s variables are also known as coarse-grained

variables (CGVs). We can also include the cell matrix in the set of CVs, in which case the

relevant free energy is

G(s1, ..., sn,h) = −
1

β
ln

[

e−βPdet(h)

∆ [det(h)]2

∫

D(h)

dr1 · · ·drN e−βU(r)

n
∏

α=1

δ (qα(r)− sα)

]

(3)

In the Crystal-AFED approach of Refs. [6,13], the cell matrix alone was selected as the set

of target CVs, and it was possible to drive these variables directly with a high temperature

and adiabatic decoupling. However, when including internal order parameters in the set

of CVs, this is no longer possible, and it is necessary to employ the extended phase-space
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approach of Refs. [25,26]. In this case, we write the product of δ-functions
∏

α δ(qα(r)− sα)

as the limit of a product of Gaussian functions according to
n
∏

α=1

δ (qα(r)− sα) =
n
∏

α=1

lim
κα→∞

(

βκα

2π

)1/2

exp

[

−
βκα

2
(qα(r)− sα)

2

]

(4)

In practice, the inverse width parameters κα are taken to be large but finite. Thus, if Eq.

(4) is substituted into Eq. (2) or Eq. (3), the result is a modification of the potential U(r)

by the addition of a harmonic potential V{κ}(r, s) given by

V{κ}(r, s) =
1

2

n
∑

α=1

κα (qα(r)− sα)
2 (5)

where s ≡ s1, ..., sn, so that the potential for the extended phase space becomes

V (r, s) = U(r) + V{κ}(r, s) (6)

For finite κα, we obtain approximations G{κ}(s1, ..., sn; β) ≡ G{κ}(s; β) or

G{κ}(s1, ..., sn,h; β) ≡ G{κ}(s,h; β) to the Gibbs free energy surfaces as functions

either of s alone or of both s and h, that approach the exact value as κα → ∞.

A set of temperature-accelerated equations of motion capable of generating the Gibbs

surfaces in either Eq. (2) or (3) is based on the Martyna-Tobias-Klein (MTK) equations of

motion31,32, for which measure-preserving integrators have been developed33,34. Introducing

two temperatures Ts for the order parameters, and Th for the cell matrix, the equations of

motion take the form

ṙi =
pi

mi
+

pg

W
ri

ṗi = Fi −
pg

W
pi −

1

Nf

Tr[pg]

W
pi + Bath(T )

ḣ =
pgh

W

ṗg = det(h)
[

P(int) − P I
]

+
1

Nf

N
∑

i=1

p2
i

mi
I+ Bath(Th)

ṡα =
psα
µα

ṗsα = κα(qα(r)− sα) + Bath(Ts).

(7)

Here, “Bath” refers to some heat bath coupling, e.g., Nosé-Hoover chains35, generalized

Gaussian Moment thermostats36, a Langevin bath37–39, ...

Fi = −
∂U

∂ri
−
∑

α

κα(qα(r)− sα)
∂qα
∂ri

+ f
(constr)
i (8)
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is the total force on the ith atom, including forces from any holonomic constraints, and Nf

is the effective number of degrees of freedom. The matrix pg is a 3×3 matrix that serves as

a barostat to control the fluctuations of the pressure tensor estimator, which is given by

P(int)(p, r) =
1

det(h)

N
∑

i=1

[

pi ⊗ pi

mi
+ Fi ⊗ ri

]

. (9)

The mass-like parameters W and µα that determines the time scales for the motion of the

cell matrix and internal order parameters, respectively, are determined by the conditions

W = kBThτ
2
h, µα = kBTsτ

2
s , where τh and τs time scales relevant to the motion of each set of

CVs, respectively. The units of the harmonic coupling parameters κα depend on the choice

of the associated CVs, so that the harmonic coupling term in Eq. 5 has units of an energy.

Finally, we note that there are two choices for the parameter Th in Eqs. (7). If the Gibbs

free energy in Eq. (2) is sought, then Th should be set equal to the physical temperature T ,

while if the free energy in Eq. (3) is the goal, then Th should be set equal to Ts. In Ref. 13,

we developed the algorithms needed to integrate the original equations of Crystal-AFED6

when holonomic constraints are imposed on a system, and the introduction of the extended

variables in Eqs. (7) requires no change to this procedure. Consider, first, the case when

Th = T , so that the Gibbs free energy surface in Eq. (2) is sought. When the extended

variables s are sufficiently slow, they are driven by forces generated by averaging over the

motion of the remaining variables. In this case, the motion of s is effectively governed by

µαs̈α = −
∂

∂sα
〈V{κ}(r, s)〉s+Bath(Ts)

= 〈κα (qα(r)− sα)〉s + Bath(Ts) (10)

where 〈· · · 〉s indicates an ensemble average over the degrees of freedom (r,p,h,pg) at fixed
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values of s = (s1, ..., sn). Thus, the ensemble average of 〈κα (qα(r)− sα)〉s can be written as

〈κα (qα(r)− sα)〉s =
C

∆{κ}(s, β)

∫

dNp

∫

dpg

∫

dh

[det(h)]2

∫

D(h)

dNr [κα (qα(r)− sα)]

× exp

{

− β
[

H(p, r) + Tr[pT
gpg]/2W + P det(h) + V{κ}(r, s)

]

}

= β−1 ∂

∂sα
ln∆{κ}(s; β)

= −
∂G{κ}(s; β)

∂sα
. (11)

Here H(p, r) is the physical Hamiltonian H(p, r) =
∑

i p
2
i /2mi+U(r), C is a normalization

constant, and G{κ}(s; β) is the finite-κ approximation to the true Gibbs potential of mean

force surface, which is also the free energy surface. ∆{κ}(s; β) is the finite-κ partition function

at fixed s1, ..., sn:

∆{κ}(s; β) = C

∫

dNp

∫

dpg

∫

dh

[det(h)]2

∫

D(h)

dNr

× exp

{

− β

[

H(p, r) + Tr[pT
gpg]/2W + P det(h) + V{κ}(r, s)

]}

. (12)

Since Eq. (10) generates the density P{κ}(s; βs, β) ∝ exp(−βsG{κ}(s; β)), the Gibbs free

energy surface can be constructed from a normalized histogram P̃
(adb)
{κ} (s; β, βs) collected

during the integration of Eqs. (7) under adiabatic (‘adb’) conditions using

G{κ}(s; β) = −β−1
s ln P̃

(adb)
{κ} (s; βs, β) + C ′, (13)

According to Eq. (4), in the limit {κα → ∞}, G{κ}(s; β) converges to the exact Gibbs

free energy surface G(s) in Eq. 2. In practice, {κα} are chosen sufficiently large that the

difference between G{κ} and G is negligible, noting that the error is bounded and of order

maxα(1/κα)
30. When Th = Ts, a similar argument can be made for the full Gibbs free energy

surface in Eq. (3).
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B. FES construction and representation

While a free energy surface can be obtained directly by accumulating a histogram over

the course of a simulation, this approach has the obvious limitation that the number of bins

rapidly increases with the dimensionality of the surface. In order to address this problem,

we make use of the single-sweep method proposed in Ref. 40. In this approach, TAMD/d-

AFED is first used to explore the configuration space only, and centers are deposited in

the space of the target CVs. Next, free energy gradients (i.e. mean forces) calculated at

each center are used to construct the FES using a set of radial basis functions (RBF) as

interpolants. The use of RBFs as interpolants in the construction of an FES is a technique

that can be applied on sparse grids with regular or irregular boundaries, and therefore a

high-dimensional generalization of the thermodynamic integration method41

In order to apply the single-sweep method, we first represent the free energy surface

G{κ}(s; β) in Eq. 13 as a linear combination, denoted G̃(z), of RBFs. This expansion takes

the form

G̃(z) =
K
∑

k=1

akφσ(|z − z(k)|) (14)

Here z is the full set of coarse-grained variables, i.e., z = (s1, ..., sn) if Eq. (2) is sought, or

it is the full set of coarse-grained variables and the box matrix, i.e., z = (s1, ...., sn,h) if Eq.

(3) is sought. Note that each element of h, which is generally taken to be upper or lower

triangular when off-diagonal elements are needed, is treated as an independent CV when

constructing the linear combination in Eq. (14). One possible choice of φσ(r) is a Gaussian

kernel of width σ: φσ(r) = exp(−r2/2σ2). The K Gaussian centers, z(k), are chosen along a

CV trajectory generated from a TAMD/d-AFED simulation and the optimal coefficients ak

and σ are determined via minimization of the the cost function

E(a, σ) =
K
∑

k=1

|f (k) +∇z(k)G̃(z)|2, (15)

where the numerical mean force f (k) is obtained from restrained MD simulations performed

at the locations of the centers z(k). The mean force f
(k)
α on the coarse-grained variable sα is

given by the average

f (k)
α =

〈

κα(qα(r)− sα)
〉

z(k)
(16)
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where z is fixed at z(k) in the NPT simulation. The mean force on hµν , when h is included

in the FES, is calculated from

fhµν
= det(h) ·

∑

γ

[h−1
µγ

〈

(P (int)
γν − Pδγν)

〉

z(k)
] (17)

with both the coarse-grained variables s1, ..., sn and h held fixed at the selected centers z(k),

which now include centers for the box matrix. Note that, when h is held fixed, the ensemble

is equivalent to an NhT ensemble. For a fixed σ value, minimization of the cost function in

Eq. (15) leads to linear equations40, and the coefficients ak can be obtained using any linear

solver. The calculation can be carried out for a range of σ values in order to find an optimal

choice for σ that leads to the lowest overall error40. Note that one can also use the modified

cost function of Monteferrante et al.42.

The functional form of the free energy surface via the linear combination of radial basis

functions in Eq. (14) may not provide a transparent picture of the free energy landscape,

especially when the dimension is high. In order to locate all of the minima on the free

energy surface thus constructed, we run many optimizations in the CGV space using, for

example, a steepest-descent algorithm, from an ensemble of initial points. Since the centers

used in the reconstruction cover the important regions of the configuration space, they

serve well as the initial points. After these minima are found, the string method43,44 can

be used to locate saddle points on the high-dimensional free energy surface as well as the

minimum free energy paths (MFEPs). Once this information is available, a network can be

generated in which the minima are the vertices/nodes and any two minima are connected

by an edge if there is a MFEP connecting them directly. We also assign a weight to each

edge, which is the free energy of the saddle on the MFEP. In this way, we obtain a weighted

graph representation for the FES, similar to a recent scheme introduced for protein free

energy landscapes45. Such a network is a reduced representation of the surface that captures

its most salient features, including critical points and their associated free energy values.

Any further analysis, particularly analysis involving integration over the CVs, can then be

performed using Eq. (14).
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III. ORDER PARAMETERS USED IN THIS STUDY

The Steinhardt order parameters22, Ql, l = 3, 4, 6, · · · , are widely used to identify crystal

structures. Q4 and Q6 can distinguish the simple cubic (scc), face-centred cubic (fcc), body-

centred cubic (bcc), and hexagonal closest packing (hcp) crystal structures found in the

solid phases of sperical particles. For molecular crystals, one typically requires more general

order parameters23,24,46. Here, we employ the continuous version of the general Steinhardt

order parameter given in Ref. [47,48]. Thus, the global order parameters used as CVs in our

study take the form

Ql =

[

4π

2l + 1

l
∑

m=−l

|Qlm|
2

]1/2

, (18)

where

Qlm =
1

NNcoor

Nb
∑

b=1

fc(rb)Ylm(r̂b). (19)

Here, Nb is the total number of atom pairs separated by a distance rmax, N is the

total number of atoms, and Ncoor is the first-shell coordination number of each atom.

Ylm are the spherical harmonics, r̂b is the unit vector along the direction rb, i.e., r̂b =

(sin θb cosφb, sin θb sin φb, cos θb). While the normalization factor in Eq. 19 should be Nb, the

quantity Nb varies as the phase changes, which will cause discontinuities in the function Ql.

For this reason, we choose NNcoor as the normalization factor for convenience. In this study,

Ncoor = 6. fc(r) is a smooth switching function defined as

fc(r) =



























1, r < rmin

1
2

{

cos

[

(r−rmin)
rmax−rmin

π

]

+ 1

}

, rmin < r 6 rmax

0, r > rmax

This function is used to remove discontinuities in the original definition of the Steinhardt

parameters22 that occur when each bond is switched off at a specific radius rmax. The value

of rmax is determined from the end of the first peak in the radial distribution function.

In order to describe the bond orientation for each atom, we employ the local Steinhardt



13

order parameters, ql, l = 3, 4, 6, · · · defined as

ql(i) =

[

4π

2l + 1

l
∑

m=−l

|qlm(i)|
2

]1/2

, (20)

where

qlm(i) =
1

Nb(i)

Nb(i)
∑

j=1

Ylm(r̂ij). (21)

Here, Nb(i) is the number of all pairs connecting to atom i within a cutoff rmax as above.

The parameter ql(i) can be used to distinguish different atomic neighbor environments, i.e.,

a bcc arrangement will have a very different ql value from an fcc arrangement. Another set

of local Steinhardt order parameters, denoted as wl(i) and defined as

wl(i) =

∑

m1+m2+m3=0





l l l

m1 m2 m3



 qlm1(i)qlm2(i)qlm3(i)

(

∑l
m=−l |qlm(i)|

2

)3/2
, (22)

is employed to analyze solid structures. Since the temperature in our studies is close to

the melting point, thermal fluctuations are very large. Consequently, the distribution of

these local order parameters is rather broad, which diminishes their ability to distinguish

different crystal structures. Therefore, averaged versions of these bond order parameters,

introduced previously by Lechner and Dellago49, which are more sensitive to different crystal

structures, are also employed in the present study, although other local order parameters

are also possible50. The averaged bond order parameters q̄l(i) and w̄l(i) have the same

definitions as Eq. (20) and Eq. (22) except that qlm is replaced by q̄lm, which is given by

q̄lm(i) =
1

Ñb(i)

Ñb(i)
∑

k=0

qlm(k), (23)

where summation runs over all neighbors of particle i, including particle i, itself. It is obvious

that averaged bond order parameters account for the second shell.

IV. XENON POLYMORPHISM AT HIGH PRESSURE AND MELTING POINT

Recent simulation studies51,52 of solid xenon shows that its crystal structure undergoes a

fcc-bcc transition at high pressures (25 GPa ∼ 30 GPa) close to melting point (2700 K∼ 2900
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K)51,52. These studies also show that bcc grows naturally from an fcc-liquid mixed-phase

state, and the authors reported a phase diagram with the fcc-bcc-liquid triple point near 25

GPa and 2700 K. Subsequent theoretical investigations challenged the exact location of this

triple point53,54. Enhanced sampling techniques have the distinct advantage over studies of

this type in that they allow the metastability and coexistence behavior to be investigated

on the basis of the free energy surface. To our knowledge, no such calculations have been

performed for this problem, which makes it an interesting test case for our new approach.

A. Implementation

We consider a system containing 4,000 Xenon atoms initially in a 10×10×10 fcc arrange-

ment. The h matrix was constrained to be orthorhombic, and therefore only the diagonal

elements (the cell lengths a, b and c) were used. We chose a temperature of 2700 K and

a pressure of 25 GPa as the imposed external conditions of the simulation. Interactions

were described by a Buckingham potential55, which is believed to improve on the simpler

Lennard-Jones potential for condensed systems of nobel gas atoms56. The accuracy of this

model has been verified against experiment52. All the simulations were performed using the

PINY MD code.57,58

We first studied the FES with the variables Q6 and Q4 as the target CVs. The extended

variables were maintained at 1.5×105K for enhanced sampling with τs = 50 ps, τh = 0.5 ps,

and rmax = 4.5 Å. The coupling constant κ was the same for Q6 and Q4 and set to 1× 1010

K. In a second study, we investigated how the FES changes when h is added to Q6 and

Q4 in the CV set, which leads to a five-dimensional FES. The temperature of the extended

variables and h matrix was maintained at 1× 105 K for enhanced sampling with τs = 50 ps,

τh = 1ps, and rmax = 4.5 Å. The coupling constant κ for Q6 and Q4 were again taken to be

1× 1010 K. Finally, in order to prevent the system from sampling liquid or glassy states, we

restricted Q6 > 0.7.

In both cases we used the following protocol in the simulations: Ten 5 ns long trajectories

starting from the fcc crystal were generated in order to explore the configuration space by

integrating Eqs. (7) with a time step of 5 fs. To reconstruct the FES associated with Q4

and Q6 alone, 764 centers were deposited along the trajectories in such a way that any new
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center should be at a distance of at least 0.01 from any previously deposited center. Within a

neighborhood of 0.003 of each center, all instantaneous forces on the corresponding extended

variables were collected from the sampling run for the calculation the mean forces at that

center. In order to reconstruct the FES associated with Q4, Q6, and h, the cell lengths were

first scaled by a factor of 1/30 so that the range of cell lengths were comparable to those

of Q6 and Q4. Then, 2462 centers were deposited in the five-dimensional CV space. The

mean forces at those centers were calculated from restrained MD simulations of 10 ps each.

Because of the scaling of h, the mean forces needed to be scaled up by a factor of 30 in

the corresponding components. Finally, the stability of all the structures corresponding to

minima on the FES were tested using a standard isothermal-isobaric simulation of length 5

ps with a fully-flexible box.

B. Results and discussion

Figures 1(a) and 1(b) show the trajectories of Q4 and of the cell lengths when the

enhanced sampling targeted only the Q4 and Q6 variables. Both trajectories show two stable

phases, namely fcc and bcc, under the conditions of the simulation. The two-dimensional

FES subsequently calculated by the single-sweep method is shown in Fig. 2. The basins

corresponding to the fcc and bcc structures can clearly be seen on this surface, which also

shows the minimum free-energy path between these structures generated using the string

method (note that we neglected the tensor M entering the definition of the MFEP in this

calculation30 since our primary goal was to calculate the free energies of the minima and

the saddle point on the landscape). Fig. 3 shows the free energy profile along the MFEP,

from which we can estimate the free energy difference between bcc and fcc structure as

2.5 meV/atom (or 58 cal/mol). Note that for a homogeneous 4,000-atom system, e.g., a

pure fcc or pure bcc structure, finite-size effects are small, so that the microscopic unit

meV/atom can be transformed directly into a macroscopic unit, e.g., kcal/mol. The very

small FE difference indicates that the bcc and fcc are thermodynamically equally stable at

2700 K and 25 GPa. Our results support the previous two-phase studies51,52 in that the

bcc structure is stable at 2700 K and 25 GPa, and therefore, the fcc-bcc-liquid triple point

should be close to this condition in the P -T plane. Table I gives the energy decomposition
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FIG. 1: Panels a and c: Trajectory of Q4. Panels b and d: Trajectory of cell lengths. Panels a

and b are from temperature-accelerated sampling with only Q4 and Q6 as CVs, while in panels c

and d, Q4, Q6 and the cell lengths are used as CVs. Q4 > 0.3 corresponds to the fcc structure;

Q4 < 0.3 corresponds to the bcc structure.

analysis for the fcc and bcc structures. Not unexpectedly perhaps, we find that the bcc

structure is stabilized by entropic effects. Such stabilization was also predicted in relatively

early studies based on simple Lennard-Jones models59. The high entropy of the bcc structure

dominates over the enthalpy, thus allowing it to become more stable than the fcc structure.

As the temperature decreases and entropic effects become less important, we predict that

fcc becomes the dominant state, which is well known for Xenon and was also seen in early

studies59. This is a good example showing that the free energy is the right thermodynamic

state function for predicting crystal polymorphism, particularly when the temperature is

high.

When the three cell lengths are added to the set of CVs, a larger set of metastable

structures is explored at 2700 K and 25 GPa. Figures 1(c) and 1(d) show the resulting

trajectory. A full five-dimensional FES was constructed using the single-sweep method with

the mean forces on the CVs as input. Free energy minima were also located on this surface.
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FIG. 2: Free energy surface as a function of Q4 and Q6 when these variables are used as the sole

target CVs. The red circles represent the minimum energy path connecting the bcc and fcc basins,

as calculated from the string method based on the constructed FES. The free energy values, in eV,

correspond to the total free energy of the system.

TABLE I: Free energy decomposition analysis for the fcc and bcc structures. ∆G is the free energy

difference; ∆H is the enthalpy difference; ∆V is the volume difference; ∆S is the entropy difference,

∆G = ∆H − T∆S. All energies are in meV/atom. Enthalpy and volume are calculated from a

10,000-step MD simulation. T = 2700 K and Pext = 25GPa.

∆G ∆H ∆E Pext∆V T∆S

bcc - fcc -2.5 12.8 10.8 2.0 15.2

The locations of the centers used in the FES construction (grey dots) and of the minima

(colored filled circles) are shown in Fig. 4 after projections in the space of Q4 and Q6, and in

Fig. 5 in the space of the three cell lengths. The fact that the minima are tightly clustered

in the projection on the Q4-Q6 plane (see Fig. 4) but are well separated in the space of
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FIG. 4: Distribution of centers and minima in the space of Q4 and Q6. Grey dots are centers

deposited in the space of the collective variables. The red filled circles are minima for bcc, the

blue is minima for fcc and the green are minima for new metastable states identified as fcc with

stacking fault later.
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FIG. 5: Distribution of centers and minima in the space of cell lengths. The cell lengths have been

scaled down by a factor of 1/30 in units of Å. Grey dots are centers deposited in the space of the

collective variables. The red filled circles are minima for bcc, the blue is minima for fcc and the

green are minima for new metastable states identified as fcc with stacking fault later.

cell lengths (see Fig. 5) shows that using Q4 and Q6 alone as CVs is insufficient to identify

more metastable solid forms for this system; indeed, the location of these minima cannot be

accurately resolved in the lower dimensional Q4-Q6 space. Thus, we see that the inclusion

of the cell matrix in conjunction with the internal order parameters is essential. Finally,

in order to better visualize the five-dimensional FES, we created a network representation

of it as described in methodology (see Fig. 6). Fig. 6 also contains the free energy values

(relative to the bcc structure) of the minima and saddle points. In order to avoid confusion,

we should point out that the saddle or MFEP we obtained may not be the true solid-solid

transition path, as finite-size effects60 could lead to an overestimation of the free energy

barriers.

The structures shown in the network diagram were further analyzed using local order

parameters and averaged local order parameters. The values of the local and averaged local

order parameters for all of the structures are shown in Fig. 7. In addition to the fcc and bcc

structures already identified, we also find fcc crystals with stacking faults characterized by
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FIG. 6: Network representation of 5-dimensional free energy surface along Q4, Q6 and cell lengths.

The numbers assigned to each node correspond to free energies at the minima; the numbers assigned

to the edges are the free energy values for the corresponding saddle points. The free energy is in

eV.

an hcp structure. Even though fcc-hcp polytypisim is expected to exist, it is still impressive

that our sampling can locate these structures. Fig. 7 (a) and (b) show that there exist

two types of atoms within such a structure. One type is characterized by order parameters

located in the fcc region (for example, w4 ∈ [−0.10,−0.06] and q4 ∈ [0.17, 0.19] in (b)), and

the other type is characterized by order parameters located in the hcp region (for example,

w4 ∈ [−0.1, 0.02] and q4 ∈ [0.13, 0.15] in (b)). (See also Ref. [49] for the order parameter

values that characterize the hcp structure.) Fig. 8 shows snapshots of several such structures

with atoms colored based on their (w4, q4) values. These pictures clearly show the fcc and

hcp arrangement occurring in an alternating pattern in these structures. Even though we

sample just a few fcc structures with such stacking faults, we expect that longer runs or runs

employing a higher temperature for h and the extended variables could yield even more of

these. Experimental evidence for the existence of such states has been reported in pressure-

induced Martensitic fcc-to-hcp transformations61, where they are interpreted as intermediate

states between fcc and hcp. In order to see whether the defects in our fcc structure are
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FIG. 7: Comparison of the distributions of local order parameters for several solid forms. The

variables q6, q4 and w4 are the local bond order parameters; q̄6, q̄4 and w̄4 are the averaged bond

order parameters. In order to minimize thermal smearing, order parameters for each atom are

obtained by averaging over 200 equilibrated configurations. 4,000 dots corresponding to 4,000

atoms are given for each solid form. The stack-faulted fcc structures (SF fcc in legend) show two

types of atoms according to their local order parameters (see green clusters in a and b). The

averaged bond order parameters include the second neighbor shell. Therefore, the atoms of the

stack-faulted fcc split into more types as the local environment of an atom becomes more diversified

(see green clusters in c and d).

FIG. 8: Pictures of the fcc with stacking fault. Red corresponds to fcc atom type, with w4 ∈

[−0.10,−0.06] and q4 ∈ [0.17, 0.19]; blue corresponds to hcp atom type, with w4 ∈ [−0.1, 0.02] and

q4 ∈ [0.13, 0.15]. SF fcc means fcc with stacking fault.
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FIG. 9: Calculated powder diffraction pattern of the fcc structures with stacking fault. The Debyer

package62 was used to obtain the powder patterns, and the calculation is based on the Debye

scattering equation63. The temperature and pressure are taken to be the experimental conditions

for direct comparison. The wavelength is taken to be 0.7 Å so that the powder diffraction pattern

of the fcc structure at 3 GPa is identical to the experimental one in Fig. 1 of Reference 61. SF fcc

means fcc with stacking fault.

indeed these intermediate states, we have calculated the powder diffraction pattern using the

Debyer package62. Fig. 9 shows the powder patterns of the three fcc structures with stacking

faults. These match well the patterns shown in Fig. 1 of Reference 61. The bulk system

is treated as a cluster in the calculation (no periodic boundary conditions) and therefore,

finite-size effects may explain the tiny difference between the calculated and experimental

powder diffraction patterns. From the comparison of the powder diffraction patterns, there is

compelling evidence to suggest that the stacking-fault structures we obtained could resemble

the intermediate states visited in the pressure-induced fcc-to-hcp transition.

Body centered orthorhombic (bco) and body centerd tetragonal (bct) structures also

appeared in our sampling. The radial distribution functions (RDFs) of the bco, bct, fcc,

and bcc forms at 25 GPa and 2700 K are presented in Fig. 11 in order to show the structural

difference. The RDFs for the fcc and bcc structures show different features, which can also
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serve as an identifier for fcc and bcc, as was done in previous studies51,52. The differences

between bcc and bco/bct are sufficiently small that the RDFs are very similar. Therefore, in

order to identify the bco/bct structure, we calculated their unit cell parameters. Unit cells

at high temperature are generally difficult to determine. Since atom switching or atomic

jump diffusion may happen in the bulk system at high temperatures, the trajectory-averaged

position of an atom gives misleading information about the final lattice as many atoms can

be off the lattice sites. Thus, in order to obtain reliable unit-cell information, we employed

the following procedure: From four well-equilibrated configurations, we take each atom in

each configuration as a “central” atom and find its neighboring atoms within the first peak

of the RDF. For the bcc structure, the first peak of the RDF consists of both first and

second shell atoms while for the fcc structure, it contains only first-shell atoms. The central

atom together, with its neighbors, forms one unit, and we have 16,000 such units (each

configuration having 4,000 atoms). Overlaying these units with the central atom at the

same location and aligning them generates one central atom surrounded by several well-

separated clusters. We then use a K-means clustering algorithm to find the clusters and

calculate their centroids as the average positions of the atoms associated with the cluster.

The centroid is the most probable position of the neighboring atoms. We, therefore, infer the

unit cell information from these centroids. In order to illustrate the approach, Fig. 10 shows

the clusters and their centroids thus obtained for the bcc and fcc structures. In addition,

we have provided animations in the Supporting Information (SI) showing the clusters and

centroids from different perspectives. The unit cell parameters of fcc, bcc and bco/bct are

summarized in Table II. In addition to providing a reliable identification of the bco and bct

structures, the high-temperature unit cell analysis we employed has an advantage over an

analysis of the RDFs: Due to high-temperature thermal smearing, the bcc structure acquires

a putative coordination number of fourteen if that coordination number is computed from an

integration of the RDF up to the first minimum. However, the coordination number obtained

from the high-temperature unit-cell analysis is eight as expected for the bcc structure.

The bct structure remains stable during an isothermal-isobaric (NPT) MD simulation

with a fully flexible cell. The stability of the bco structure can only be verified when the

simulation box is constrained to be orthorhombic. When we relax it in an NPT simulation
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FIG. 10: Left panel: The bcc structure obtained by the K-means clustering approach (see text).

The snapshot shows the central atom is shown in green, the red spheres represent the centroids

of the clusters corresponding to the first-shell atoms, while the cyan spheres show the centroids

of the clusters corresponding to the second-shell atoms. The small yellow spheres represent 8,000

randomly selected cluster points from 224,000 total points. Right panel: The fcc structure obtained

by the K-means clustering approach. As with the bcc structure, the green sphere is the central

atom, the red spheres are the centroids of the clusters corresponding to the first-shell atoms, and

the small yellow spheres represent 8,000 randomly selected cluster points from 192,000 total points.

TABLE II: Unit cell parameters for fcc, bcc, and the predicted crystal forms bco and bct at 25

GPa and 2700 K. Cell lengths are in Å. α = γ = β = 90◦.

a b c Z

fcc 5.27 5.27 5.27 4

bcc 4.25 4.25 4.25 2

bco 4.40 4.23 4.14 2

bct 4.22 4.27 4.27 2

with a fully flexible cell, the orthorhmobic box shape tilts with final box angles being α =

85.4, β = 86.8 and γ = 91.0, which implies that bco may not be a true stable/metastable

state. This is reasonable as the FES on the sub-manifold of the orthorhombic cell constraint

can have minima that may not persist when the constraint is removed. However, the success

we have shown in locating this minimum, nevertheless, shows the power of the present

approach in generating the FES and locating new crystal forms. Because bct/bco structures

are only visited once in our trajectories and since their cell matrices have one short length
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FIG. 11: Radial distribution function for several solid forms at 25 GPa and 2700 K.

of 36.5 Å, finite-size effects may play a role, and we, therefore, exclude them from the

5-dimensional FES construction, leaving them for future studies.

V. SOLID-LIQUID TRANSITIONS OF COPPER

Molecular dynamics (MD) simulations of melting at superheated conditions have provided

atomistic insights into some of the theoretical models of the melting mechanism64,65. Rely-

ing on MD simulations to observe the equilibrium melting of a solid is not optimal because,

near the melting point, the melting transition is a rare event with a mean first passage time

many orders of magnitude greater than characteristic lattice vibrational periods. Enhanced

sampling methods, such as umbrella sampling and metadynamics, have been used to calcu-

late free energy changes in solid-liquid transitions of ductile metals66 and of ice/water47,67.

Our temperature-accelerated sampling method offers a robust way to calculate free energy

changes for melting/freezing processes. Here, we use copper as an example to show that

order-parameter-aided TAMD/d-AFED can render such a calculation very efficient.
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A. Simulation details

The interatomic interactions were modeled using an Embedded Atom Method (EAM)

potential for copper developed by Mishin et al.68. Simulations were performed using a cell

containing 4,000 copper atoms (10× 10× 10 unit cell). We have used the Steinhardt order

parameters Q6 and Q4 as the collective variables to obtain the FES. In order to explore the

free energy surface the initial system is slowly heated to the target temperature 1300 K under

a pressure of 1 atm in a series of NPT simulations. Starting from the final structure of this

first phase, we launched a 1.5 ns TAMD/d-AFED trajectory with the extended variables at

1× 105 K. From this trajectory, we selected 15 configurations every 100 ps and used them as

the initial configurations for 15 independent TAMD/d-AFED samplings of 1 ns each. The

extended variables were maintained at 1× 107 K for the purpose of enhanced sampling with

τs = 7.7 ps for Q6 and τs = 15.5 ps for Q4. We have taken 5× 108 K and 1× 108 K as the

coupling constants for Q4 and Q6, respectively. τh = 0.75 ps. rmax = 2.75 Å. Along these

trajectories, a total of 933 centers were deposited at distances no less than 0.05 from each

other. The mean force at a center was evaluated from the instantaneous forces sampled

from TAMD/d-AFED trajectories when the corresponding extended variables were within

0.01 to that center. All the simulations were performed using the PINY MD code57,58 with

an integration time-step 1 fs.

B. Results and discussion

Along a representative TAMD/d-AFED sampling trajectory, we observed several melting

and refreezing transitions. A portion of this trajectory has been rendered into a movie and

is available in the SI. Fig. 12 shows the free energy surface in the variables Q6 and Q4 at

1300 K and 1 atm pressure, which is close to experimental melting point of 1360 K. The

minimum free energy path (red circles in Fig. 12) on the resulting FES was calculated from

the string method, and the free energy along it is shown in Fig. 13.

Different methods for estimating the melting temperature have been suggested in the

literature, including the Z-method69 and two-phase melting70 to mention a few. One estimate

of the melting temperature has been reported for the same EAM potential71. In this study,
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a value of Tm = 1300 ± 15 K was obtained using the superheating-supercooling hysteresis

approach72, while Tm was found to be 1350± 20 K with the two-phase method. Finally,

an average of these two values, 1325 K, was used as the melting point in this study. The

small free energy difference of the solid and liquid state from our calculation (∼ 4eV for

4000 atoms or 1 meV per atom at 1300 K) is consistent with the previous predictions of the

melting point.

We observe that the solid basin is populated with a host of metastable states that are

characterized by different defects (mainly, vacancy-interstitial pairs, dislocations, interstitial

clusters). In order to verify independently the existence of these metastable states on the

high dimensional potential energy surface, we have used the configurations from TAMD/d-

AFED trajectories to perform isothermal-isobaric MD relaxations for 50 ps. A majority

of these relaxed configurations, possibly corresponding to metastable states, lie inside the

solid basin. These locally stable states inside the solid basin correspond to point defects -

different concentrations of vacancy interstitial pairs, defect clusters, etc. and line defects

such as dislocations. The presence of multiple metastable states might suggest the existence

of multiple melting pathways (i.e. the system can escape from the solid basin along differ-

ent pathways), and this possibility will be the subject of a future mechanistic study. We

further note that the MFEP obtained and the barrier calculated from the FES pertain to a

relatively small system of 4,000 copper-atoms. It is, therefore, necessary to verify that this

system size is sufficiently large to capture the critical nucleus under the conditions studied.

Moreover, a histogram test73,74 should be performed in order to validate the CVs chosen.

These validations lie beyond the scope of the present paper, whose focus is on the new

methodology, however, they will be performed in future study focused specifically on the

melting process. Nevertheless, the present example demonstrates, we believe, the ability of

the new methodology to sample efficiently both the solid and liquid states.

VI. CONCLUSION

In this paper, we have shown that temperature accelerated techniques employing both

the cell matrix and general order parameters as target collective variables lead to enhanced

sampling both of crystal polymorphs and of solid-liquid phase transitions. Our scheme
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FIG. 12: The free energy surface in the Q6 − Q4 plane at 1300 K and 1 atm. The MFEP (red

circles) is calculated from the string method based on the constructed free energy surface. The

unit for free energy is eV.

is based on a combination of the crystal-AFED (adiabatic free energy dynamics) approach

previously introduced by Yu and Tuckerman6,13 and the temperature accelerated MD/driven

AFED25,26 adapted for the isothermal-isobaric ensemble and applied to the aforementioned

order parameters. Since the resulting free energy surfaces are of relatively high dimension,

we have discussed a robust approach for analyzing these surfaces, including the extraction

of free energy values at basins/saddles from the string method and the representation of the

FES as a network graph.

The method was applied in studies of polymorphism in xenon crystals at high pressure

and temperature using the Steinhardt order parameters as collective variables and to the
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FIG. 13: The free energy profile along MFEP in Q6 −Q4 space at 1300 K, 1 atm.

solid-liquid transition in copper at 1300 K. In the xenon crystal, the expected fcc and bcc

structures were recovered, and several additional structures, including an fcc state with a

stacking fault, were identified. For copper, we showed that the enhanced sampling approach

allows the free energy surface of the solid-liquid transition to be efficiently generated from

the trajectories generated.

In implementing the new approach introduced, a number of conditions need to be con-

sidered. In general, we require the system size and box shape (orthorhombic, monoclinic,

triclinic,...) to accommodate any possible unit cell size and shape of the crystal under study,

and the search range for the method can be constrained to restrict the search to a particular

class of structures of particular interest. In an isotropic system, such as the xenon exam-

ple presented, restricting the box matrix to be diagonal, corresponding to an orthorhombic

unit cell, proves sufficient to explore its polymorphs. For an anisotropic system, such as

a molecular crystal, where molecular orientation is an important parameter, use of a fully

flexible box is generally required, as proved to be the case in our recent study of crystalline
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benzene6. Given that system size N = Na × Nb × Nc × Z, where Na, Nb, and Nc are the

numbers of replicas in each crystalline direction and Z is the number of asymmetric units in

the unit cell of the crystal whence the sampling/search originates, we must choose Na, Nb,

and Nc such that N is a common multiple of any possible Z value. In many cases involving

small organic molecules, the most common Z values are 2 and 4 but rare numbers must be

considered if a crystal can support an uncommon unit cell shape or space group7. At the

same time, N should be sufficiently large that structures with stable defects, such as were

identified for crystalline benzene6, can be accounted for.

We expect that the framework outlined in this paper to be a potentially powerful ap-

proach for the discovery of different polymorphs in many crystalline systems and for inducing

order/disorder transitions. In addition, such an approach could also serve as a tool to sup-

plement machine learning techniques24 in order to accelerate and aid in the process of fitting

general order parameters for more complex molecular crystals, and this will constitute future

work in this area.
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